给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值。例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36
输入 有不超过15组数据 每组数据两行。第一行是整数m,表示有m个加号要放( 0<=m<=50) 第二行是若干个数字。数字总数n不超过50,且 m <= n-1 输出 对每组数据,输出最小加法表达式的值 样例输入21234561123456412345样例输出
10257915提示 要用到高精度计算,即用数组来存放long long 都装不下的大整数,并用模拟列竖式的办法进行大整数的加法。 来源 Guo Wei [cpp]
- #include<bits/stdc++.h>
- #include<cstring>
- #include<stdlib.h>
- using namespace std;
- const int MaxLen = 55;
- const string maxv = "999999999999999999999999999999999999999999999999999999999";
- string ret[MaxLen][MaxLen];
- string num[MaxLen][MaxLen];
- int cmp(string &num1,string &num2)
- {
- int l1 = num1.length();
- int l2 = num2.length();
- if (l1 != l2)
- {
- return l1-l2;
- }
- else
- {
- for (int i=l1-1; i>=0; i--)
- {
- if (num1[i]!=num2[i])
- {
- return num1[i]-num2[i];
- }
- }
- return 0;
- }
- }
- void add (string &num1,string &num2,string &num3)
- {
- //加法从低位到高位相加,那么需要将字符串倒过来
- int l1 = num1.length();
- int l2 = num2.length();
- int maxl = MaxLen,c = 0; //c是进位标志
- for (int i=0; i<maxl; i++)
- {
- int t;
- if (i < l1 && i < l2)
- {
- t = num1[i]+num2[i]-2*'0'+c;
- }
- else if (i < l1 && i >= l2)
- {
- t = num1[i] - '0' + c;
- }
- else if (i >= l1 && i < l2)
- {
- t = num2[i] - '0' + c;
- }
- else
- {
- break;
- }
- num3.append(1,t%10+'0');
- c = t/10;
- }
- while (c)
- {
- num3.append(1,c%10+'0');
- c /= 10;
- }
- }
- int main()
- {
- int m; //加号数目
- string str; //输入的字符串
- while(cin >> m >> str)
- {
- //为了之后的加法计算先将这个字符串倒过来
- reverse(str.begin(),str.end());
- int n = str.length();
- for (int i=0; i<n; i++)
- {
- num[i+1][i+1] = str.substr(i,1);
- }
- for (int i=1; i<=n; i++) //求解对应的num[i][j]
- {
- for (int j=i+1; j<=n; j++)
- {
- num[i][j] = str.substr(i-1,j-i+1);
- }
- }
- //当加号数目为0
- for (int i=1; i<=n; i++)
- {
- ret[0][i] = num[1][i];
- }
- for (int i=1; i<=m; i++) //对于加号数目的枚举
- {
- for (int j=1; j<=n; j++) //对于长度的枚举
- {
- string minv = maxv;
- string tmp;
- for (int k=i; k<=j-1; k++)
- {
- tmp.clear();
- add(ret[i-1][k],num[k+1][j],tmp);
- if (cmp(minv,tmp)>0)
- {
- minv = tmp;
- }
- }
- ret[i][j] = minv;
- }
- }
- //将原先颠倒的字符串倒回来
- reverse(ret[m][n].begin(),ret[m][n].end());
- cout << ret[m][n] << endl;
- }
- return 0;
- }
这道题真的不会,就找了被人的代码贴上了,方便以后查看